
Chaotic scattering off the magnetic dipole

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 2301

(http://iopscience.iop.org/0305-4470/21/10/010)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 21 (1988) 2301-2311. Printed in the U K  

Chaotic scattering off the magnetic dipole 

Christof Jung and Hans-Joachim Scholz 
Fachbereich Physik der Universitat Bremen, D-2800 Bremen 33, Federal Republic of 
Germany 
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Abstract. Classical scattering with singularities of Cantor-set type can be observed if 
unstable localised orbits exist whose homoclinic structures are transported to infinity by 
the Hamiltonian flow. An electron moving in the field of a magnetic dipole is a simple 
example of physical relevance to demonstrate this transport mechanism. In the asymptotic 
plane spanned by impact parameter and incoming direction the deflection function is 
singular for initial conditions leading to captured orbits. Using the method of Poincari 
sections, we find a correspondence between this set of singularities and the stable manifolds 
of localised orbits. The scattering data which are measured in the asymptotic region of 
free motion provide information about chaotic motion in a finite part of the position space. 

1. Introduction 

In recent years much work has been done on chaos in bound classical Hamiltonian 
systems. Meanwhile it is well known how chaos shows up in these systems, and 
powerful methods have been applied to investigate their behaviour. In contrast, the 
physical understanding of chaos in classical scattering systems is less developed. 

From the mathematical point of view it has been shown that topological chaos can 
exist on non-compact energy surfaces due to the interplay of homoclinic and hetero- 
clinic connections of periodic bound orbits (Churchill e? al 1979). For nearly twenty 
years there have been numerical observations of complicated behaviour in classical 
models for inelastic molecular scattering (Rankin and Miller 1971, Gottdiener 1975, 
Fitz and Brumer 1979, Agmon 1982, Schlier 1983, Noid et al 1986). More recently, 
chaos has been found in satellite encounters (Petit and Henon 1986), in vortex dynamics 
(Eckhardt 1988, Eckhardt and Aref 1988) and in potential scattering (Eckhardt and 
Jung 1986, Jung and Scholz 1987). In this paper we investigate in more detail how 
scattering properties are influenced by chaotic structures positioned in a localised 
region of phase space which can be reached from infinity by the Hamiltonian flow. 

As a simple and physically relevant example we treat the classical scattering of an 
electrically charged particle in the field of a magnetic dipole, the so-called Stormer 
problem. As shown by Braun (1970), Contopoulos and Vlahos (1975) and Dragt and 
Finn (1976) this system is not completely integrable and exhibits chaotic bound 
trajectories. 

In § 2 we determine periodic orbits by iterating symmetry lines of an appropriate 
PoincarC map. The invariant manifolds of the most important fixed point are con- 
structed in 0 4 to explain the singularities of the deflection function presented in § 3. 
The global structure of the singularity set is treated in P 5 by transporting the coordinate 
lattice of the asymptotic region into the PoincarC plane. 
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In the following we call a point in the set of initial conditions singular, if the 
deflection function is discontinuous and the time delay function becomes infinite at 
this point. 

2. Finding periodic orbits 

The motion of an electrically charged particle in the field of a magnetic dipole is 
determined by the Hamiltonian 

H = ( p  - Q A / c ) ~ / ~ ~  (1) 

where 

A = A,( - y /  r3,  x/ r3,  0). 

Here we have used the following notation: x, y ,  z denote Cartesian coordinates in 
position space, r2 = x2 + y 2  + z2,  p is the momentum, m is the mass and Q is the electric 
charge of the particle. The strength of the magnetic dipole is given by Ao.  Because 
of the rotational symmetry of the magnetic field it is convenient to introduce cylindrical 
coordinates p, cp, z and conjugate momenta p p ,  pv, pz  where pv is a conserved quantity. 
Assuming pv > 0 and adopting the scaling of Dragt and Finn (1976) equation (1) can 
be reduced to the following Hamiltonian system with two degrees of freedom: 

Some contour lines of the potential (3) are shown in figure 1. On the curve p2 = r 3 ,  
called the ‘thalweg’, the potential takes its minimal value zero. At Ps = (2 ,O)  there is 
a saddle point with height V = E,  =A. For p + CO the potential vanishes. For p + 0 
the potential tends to infinity except along the thalweg where V is identically zero. 

1 .o 

W + 0 
.- 
E 
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N 
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-1.0 
0 

p coordinate 

Figure 1. Contour lines of the potential (3) for V=O,  &, 0.079, 3 ( p ,  horizontal axis; z, 
vertical axis) 
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Since scattering chaos originates from unstable periodic orbits (Churchill et a1 
1979, Jung and Scholz 1987) we start our investigation by looking for simple periodic 
orbits with energy E > E,. At E = Es we can linearise around the saddle point to find 
a periodic orbit y oscillating back and forth on the ridge of the potential mountain. 
The continuation of y for E > E ,  can be found numerically by the following method: 
let M be the PoincarC map in the p - b plane F defined by z = 0, i > 0. Let (T be the 
line p = 0. Using the fact that the Hamiltonian (2) is invariant under time reversal 
t + --t  and under spatial reflection z + - z  one can show that the intersection M(u)  n (T 

contains points of period one or two. Not all points P E  F have an image M ( P ) .  
There are orbits starting with z = 0, i > 0, escaping to infinity and never hitting the 
plane z = 0 again. In figure 2 only that part of the symmetry line is shown whose 
PoincarC image exists. For E =0.05, for example, this part consists of two disjoint 
components. 

There exists a bifurcation energy EM = 0.08, with the following properties: for 
E > EM the intersection M(u)  n U is empty (see figure 2(a)).  At energy E = EM a 
saddle node bifurcation occurs creating an elliptic fixed point P, and a hyperbolic 
fixed point P h  which turns out to represent the oscillating orbit y. The eigenvalues A I  
and h2 = l / A l  of P h  are equal to 1 at the bifurcation energy EM. With energy decreasing 
down to E ,  the eigenvalue A l  increases monotonically. Finally, at E = E, the fixed 
point P h  vanishes with 

= e x p [ 2 ~ ( 2 / 3 ) ” ~ ]  = 170. 

Obviously, for E < E ,  the orbit y cannot exist. 
In figure 2( 6), E = 0.079, the curves U and M (  U )  intersect at P, almost tangentially. 

For E = 0.078 this elliptic point breaks up into three points of intersection which 
bifurcate again at lower energies, see figure 2(c). Not all periodic points of M can 

p coordinate  

Figure 2. The symmetry line p = 0 and its Poincari image in the p / p  plane z = 0, z > 0. In 
( a )  and ( b )  the frame is P E  [0.8, 1.51 (horizontal axis); p~[ -0 .05 ,0 .1]  (vertical axis). In 
( c )  the frame is p E [0.8, 2.51 (horizontal axis); p E [-0.18, 0.321 (vertical axis). ( a )  E = 
0.082; ( b )  E = 0.079; (c)  E =0.05. 
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be found by the method of intersecting the symmetry line and its image. However, in 
the following we will see that the orbit y suffices to explain the main features of the 
scattering singularities. 

3. Singularities of the deflection function 

In this section we present the chaotic effects appearing in the deflection function 

D ( a ,  b, E ) = P  - a  + 7~ 

where a = tan-'(p,i,/p,in) and /3 =tan-' (pzout/ppout) are the directions of the incoming 
and outgoing momentum, respectively. The incoming particle starts with impact 
parameter 

b = z - p  tan a. 

In addition, it is interesting to consider the time delay 

T(a ,b ,E)=T , -Th  

between the actual motion and the motion that would occur for scattering off a hard 
wall at p = 0. In figures 3-5 the deflection angle and the time delay are plotted for 
fixed energy and a = T as a function of b. Due to the symmetry of the potential we 
have D ( b )  = -D( -b )  and T ( b )  = T ( - b )  for a = 7r. The functions D and T show 
singularities for E E (Es, E M ) .  For E < Es the particle cannot enter the relevant 
potential region;-for E > EM there is no periodic orbit to capture the particle. 

~ 

1577 
I 

b, ' 3583 
I m p a c t  p a r a m e t e r  

Figure 3. The deflection function D ( b )  (upper frame) and the time delay T ( b )  (lower 
frame) for energy E = 0.079 and incoming direction a = n-. The frames are D E [ -0.6,0.6] 
and T E  [0,300]. The two vertical broken lines indicate the impact parameter interval, 
which is magnified in figure 4. 
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Figure 4. Magnification of figure 3. 
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Figure 5. The same as figure 3 for energy E = 0.05. 

In figures 3 and 4 we see an infinite sequence of singularity clusters becoming 
smaller to the right in a geometrical progression. The accumulation point of this 
sequence is bA = 1.358 231 66.  . . . These clusters are intervals of the impact parameter, 
which contain an uncountable number of discontinuous changes of the deflection 
function and corresponding infinities of the time delay function. For I bl > b, and for 
Ibl< 1.3577 the deflection function is regular. The magnification of figure 3 around 
b,, see figure 4, looks similar in its coarse structure to figure 3. In detail, the clusters 
become more densely filled with substructures similar to the structures of larger scales. 
In the limit b + b, we find exact self-similarity. On any scale there appear new smaller 
intervals where the functions D and T are smooth. The occurrence of a fractal Cantor 
set of singularities in the deflection function can be taken as a preliminary criterion 
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for scattering chaos. Figure 5 shows that at energy E = 0.05 the chaos has spread over 
a larger impact parameter range. 

4. Invariant manifolds of the periodic orbit y 

Now we have to establish a relation between the singularities of D and the stable and 
unstable manifolds W' and W" of the periodic orbit y. In figure 6 we see the PoincarC 
plot of y, W', W" together with some quasiperiodic KAM lines around the elliptic point 
P,. Out of the infinite number of tendrils of Ws and W" we have plotted only some 
tendrils of Ws and only a short piece of W". The symmetry of the Hamiltonian (2) 
implies that W" can be obtained by reflecting W' in the line p = O .  

a 

c 

0 

+ 

p 
:: 
.a 

-0.025 
0.95 1.30 

p coordinate 

Figure 6. The PoincarC plot in the p / p  plane z = 0. z > 0 shows the elliptic fixed point P, 
(marked by a star), some K A M  lines around Pe ,  the invariant manifolds Ws, W" of the 
hyperbolic point Ph and the transport image of the asymptotic line LY = T, b > 0 (dotted). 
The axes are p (horizontal) and 6 (vertical). 

All tendrils of Ws outside W"-except the first few ones- extend into the asymptotic 
region p +CO. Conversely, scattering trajectories starting on the asymptotic parts of 
Ws will be captured by y thus forming singularities of D and T. The existence of 
homoclinic intersections between W' and W" implies the existence of hyperbolic 
invariant sets and Smale horseshoes in M. Furthermore, there are infinitely many 
periodic orbits and the set of non-periodic localised orbits is uncountable. All these 
orbits have their own stable and unstable manifolds reaching out to infinity between 
the tendrils of W' and W". If we scan the uncountable set of stable manifolds of these 
localised orbits transversally (e.g. by varying b for fixed a and E )  we find a one- 
dimensional Cantor set. This explains the fractal structures of figures 3-5. 

Because the singularity set has Lebesgue measure zero, we do not hit the singularities 
exactly in numerical computations or in actual scattering experiments. What we see 
is a discontinuity of the scattering angle when the initial condition crosses a stable 
manifold of a localised orbit. A single discontinuity can be observed already in 
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rotationally symmetric potentials (orbiting effect). However, to find a whole Cantor 
set of singularities a non-integrable potential with homoclinic structures is necessary. 

Now let us consider the motion of a scattering trajectory S which starts close to 
the stable manifold of a localised orbit r l .  At first, it will be attracted by this orbit. 
After staying there for some time it will be repelled away along the unstable manifold 
of r l .  Now S can either return to infinity or visit another localised orbit r2 via some 
heteroclinic connection. There it has to decide again between escaping and remaining 
inside the potential for another few turns. If S starts with an appropriate impact 
parameter it can move inside the potential for an arbitrarily long time and it comes 
close to various localised orbits in any succession before it esccapes to infinity. 

The behaviour of trajectories in position space is further illustrated in figure 7 .  
Part ( a )  shows the periodic trajectory y oscillating back and forth over the saddle of 
the potential. In numerical computations it is impossible to start a scattering trajectory 
exactly on W’. To show the capture of a scattering trajectory by a localised periodic 
orbit, in part ( b )  a scattering trajectory is launched with an impact parameter value 
very close to b, and therefore this trajectory starts very close to W’. Accordingly, the 
scattering trajectory becomes attracted by y and makes many turns along y. After a 
few revolutions along y we have stopped the orbit, whereas the actual numerical 
trajectory finally goes off to infinity again. In parts ( c )  and ( d )  we see two trajectories 
with b> b,. The initial values are close to W’ and the trajectories come close to y 
and make a few turns along y before they go out again to infinity. These scattering 
trajectories do not cross the orbit y. Because the initial conditions lie outside the 
singular region, the trajectories vary continuously when the initial condition b is 
changed. The two trajectories in (c) and ( d )  have essentially the same shape. Parts 
( e )  and cf) show two trajectories with b < b,. Also here the initial conditions are 
close to W’ and the scattering trajectories are first attracted by y and make a few turns 
along y. Because now b < b,, these trajectories cross the orbit y and enter the interior 
part of the potential. Here the motion is extremely sensitive to small changes of the 

I 
p coordinate 

Figure 7. Six trajectories in position space for E = 0.079. Part ( a )  shows the periodic orbit 
y. Parts ( b ) - c f )  show scattering trajectories with incoming asymptotes a = T and b as 
follows: ( b )  1.358 231 66; ( c )  1.358 231 74; ( d )  1.358 231 75; ( e )  1.358 231 64; (f) 
1.358 231 65. In each frame the p coordinate (horizontal) ranges from 0 to 3 and the z 
coordinate (vertical) ranges from -1.5 to +1.5. 
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initial conditions, which causes the discontinuous dependence of the final asymptotes 
on the initial conditions. 

The dynamics on the hyperbolic invariant set is equivalent to a shift of symbolic 
sequences. Thus captured orbits can realise infinite random sequences whereas scatter- 
ing orbits trace out finite sequences only. (For a more detailed discussion of this point 
see Jung and Scholz (1987).) 

Next we turn our attention to the dotted curve in figure 6. To this end we introduce 
the transport map T :  d + F from the asymptotic a /  b plane d to the Poincaie plane 
l? If we follow a trajectory starting at P, E d until it pierces the PoincarC plane F for 
the first time in Pr E F, say, then Pz = T( P,). Not all points P E  d have an image T (  P). 
For example, any trajectory starting with a > n-, Ibl>> 1 will never hit the plane E 

Now consider the asymptotic segment 

K = { ( a ,  b ) :  a = n-, 1.356% b < 1.3585). 

The dotted curve in figure 6 is K ‘ =  M ( T ( K ) ) ,  where M is the PoincarC map defined 
in 0 2 (theimage T ( K )  would be a tiny segment outside the frame of figure 6). Actuallly 
we have chosen 100 points evenly spaced between b = 1.3565 and b = 1.3585 and plotted 
their images. The rightmost point on the dotted curve corresponds to b = 1.3585. 
Comparing figures 3 and 4 with figure 6 we find that the intersection W s  n K’ indicates 
the boundaries of the singularity clusters. Thus a correspondence has been found 
between the singularity structure of the deflection function and the stable manifold of 
the periodic orbit y. The fact that in figures 3 and 4 much more singular points are 
seen than in W’n K‘ has a simple explanation: in figure 6 only a few tendrils are 
drawn and most of the singularities in figures 3 and 4 are caused by the stable manifolds 
of further localised orbits. Close to b = 1.3568 the dotted curve just misses intersecting 
W s  (see figure 6). Accordingly, the functions D and T do not show a genuine singularity 
there. However, close to this value of b the deflection function oscillates strongly and 
the time delay is significantly large. 

5. Higher-dimensional structure of the singularity set 

So far we have treated the case a = IT. Next it would be useful to get an overview of 
the singularity structure in the three-dimensional set ( a ,  b, E )  of all incoming 
asymptotes. 

First we fix the energy at E = 0.079 again to look for the singularities in d contained 
in a very narrow annullus (see figure 8). On this scale the fractal structure of the 
singularity ring cannot be resolved. However, the following main features are observed. 
For a # n- the functions D ( b )  and T ( b )  are no longer symmetric. For la - T I  > 0.5 
we have no singularities at all. For these directions the particle misses entering the 
chaotic region via Ps. Therefore, the scattering cannot be influenced by unstable 
localised orbits. 

To investigate the global structure of T we have chosen five radial segments 
A, B, C, D, E which intersect the ring transversally. The corresponding images 
A‘, B’, C’, D‘, E‘ under M 0 T are shown in figure 9. The transport map turns out to 
be discontinuous along the cut a = n-, b > 0. The transversality z > 0 is lost at infinity 
when b is held fixed and a is varied from n- - E to n- + E.  As a consequence, one 
piercing through the PoincarC plane is lost and A ’ =  M ( E ’ ) .  
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Figure 8. Asymptotic plane of incoming direction cy (vertical axis) and impact parameter 
b (horizontal axis) for E = 0.079. The thin annullus indicates the singularities of D(a ,  b )  
and T ( a ,  b) .  The straight lines A, B, C, D, E will be mapped into the Poincart plane E 

-0.08 8 
0.8 

p coordinate 
5 

Figure 9. Images of the lines A, B, C, D, E from figure 8 under the map M 0 T in the 
Poincark plane E In addition a part of one branch of the stable manifold W' of the fixed 
point P,, (denoted by a small circle) is shown. 

The transport map is not defined in a small simply connected region near a = n; b = 
0. Therefore the domain of T without the cut is homeomorphic to a rectangle. Under 
M 0 T this rectangle is mapped onto the strip between A' and E' .  

Instead of transporting the asymptotic coordinate lattice into F to find intersections 
with W', one can transport W 5  backwards in time into .d to look for boundaries of 
singularity clusters. This defines an inverse transport map T - I .  If x E F has an inverse 
Poincard image M - ' ( x )  then T - ' ( x )  = ~ - ' ( M - l ( x ) ) .  Therefore, to get T- ' (  W s )  it is 
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sufficient to transport an arc c = ( P I ,  P2) = W s  where P2 = M - ' ( P l ) .  In figure 10 we 
have plotted 10 000 points of T - ' (  W s )  = T - ' ( c )  for E = 0.05. At this energy the tendrils 
of W s  appearing in d are better resolved than for E = 0.079. The singular points on 
the line (Y = T, b > 0 can be identified with the boundaries of singularity clusters in 
figure 5 .  

In figure 11 we present the scattering singularities in the E /  b plane for (Y = 7~ fixed. 
Notice that the singularities in the line E = 0.05 are contained in figures 5 and 10 too 
and that there are no singularities outside the interval ( E s ,  E M ) .  Taken together, figures 
10 and 11 give some impression of the complicated way in which the leaves of the 

0.082 I 

z 
P 
c Y 

0.030 
0 4 

I m p a c t  p a r a m e t e r  

Figure 10. Intersection of W s  with the asymptotic CY/ b plane for E = 0.05. 

2.14 1 
-1 4 

I m p a r t  p a r a m e t e r  
L 

Figure 11.  Singularities of D and T in the E / b  plane for (I = T. The cross indicates the 
thalweg singularity. 
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fractal singularity set are connected and whirled around in the three-dimensional 
asymptotic space. 

In figure 11 there is an additional exceptional point marked by a cross. This 
singularity, which is completely different in nature from the singularities discussed so 
far, is related to the thalweg of the potential (3). If a particle starts exactly at the cross 
it will move through the origin along the thalweg. However, if the particle starts not 
quite exactly at the cross it will be reflected near the origin. 

6. Conclusions 

Hyperbolic invariant sets constitute the basic structure of chaos in scattering systems 
as well as in bound systems. Nevertheless, there is an essential difference in the 
appearance of chaos in these two cases. In bound systems trajectories lying in the 
neighbourhood of the hyperbolic set will be influenced by it for an unlimited time, 
thereby becoming chaotic themselves. Being surrounded by localised chaotic orbits 
the hyperbolic set cannot be observed in isolation. 

In contrast, in chaotic scattering systems the hyperbolic invariant set created by 
unstable localised orbits casts a shadow into the asymptotic region. As a consequence, 
there are uncountably many incoming asymptotes which are eventually captured. For 
t + +CO they show chaotic or periodic behaviour. However, the measure of the corre- 
sponding set of initial conditions is zero in the asymptotic space (a, b, E ) .  On the 
other hand, proper scattering orbits whose motion becomes trivial for t + --oo and for 
t + +CO feel the non-integrable potential for a finite time only. Therefore, though single 
scattering orbits may be arbitrarily complicated, they never show real chaos. But the 
deflection function of these non-chaotic trajectories helps to reveal the basic building 
blocks of localised chaos in a more direct and pure way than bound chaotic motion 
is able to do. 
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